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Abstract

An integral equation method is developed to calcu-
late the dispersion of non-perfectly conducting microstrip
lines. Both dielectric losses in the substrate and con-
ductor losses in the strips and ground plane are con-
sidered. Multiple conductors on several layers can be
studied using an impedance boundary formulation for
the derivation of the Green’s function. The microstrip
losses are evaluated by using a frequency-dependent sur-
face impedance which is derived by solving the fields in
the conductors. This surface impedance replaces the con-
ducting strip and takes into account the thickness and
skin effect of the strip at high frequencies. Good agree-
ment with available literature data is shown.

INTRODUCTION

The effect of conductor losses in microstrip circuits and
especially MMIC’s is important to the circuit designer who
is concerned with dissipation and power loss. Several stud-
ies have been performed to calculate the dispersion in mi-
crostrip structures at microwave frequencies considering di-
electric and conductor losses. Conductor losses have first
been analyzed by Wheeler [1] and Pucel [2] where a technique
based on the incremental-inductance rule was used. Other
approaches to the problem of losses include quasi-TEM mod-
els and the conventional perturbation technique as in [3] us-
ing a spectral-domain approach. However, these methods are
limited to the case where the thickness of the strip is much
larger than the skin depth. In the present study, a method is
applied that represents conductor losses in microstrip lines
by using a frequency-dependent impedance boundary, thus
taking into account the skin-effect problem. The procedure
applied for the solution of this problem is very powerful and
general. In fact it can be applied to any number of problems
including thin metallizations. The proposed method will be
applied to various interconnects and their propagation char-
acteristics will be studied in the presence of other lines or
under the effect of the shielding cavity.
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Figure 1: Shielded microstrip line configuration

THEORETICAL DERIVATION

Shielded planar microstrip transmission lines inside an in-
homogeneously filled waveguide are considered as shown in
Figure 1. Both dielectric losses in the substrate and conduc-
tor losses in the strip and ground plane are accounted for.
The side walls are assumed perfect conductors. Because of
the shielded structure, these lines propagate hybrid modes
which have non-zero cut-off frequencies with the exception of
the dominant mode. The LSE and LSM modes propagating
along the z-direction can be obtained by solving the related
boundary value problem.

The dyadic Green’s function for the problem is derived
in the spectral domain using the boundary conditions on
the perfectly conducting walls and an equivalent impedance
boundary condition on the interfaces. The current has a
transverse component and a longitudinal component. Their
variation in the y-direction is chosen such that the edge con-
ditions on the strips are satisfied. The electric field is then
given by Pocklington’s integral equation as

E(z=2")= // T(z/z) . J(y") e~ gyt dy! (1)

where kM5 ig the unknown complex propagation constant of
the microstrip. The Fourier transform used is given by

1989 IEEE MTT-S Digest



it

1 00 .
- ~jkzz
= o /_ " Teh d,. )

Substituting (2) in (1) and using the sifting property of the
Fourier transform, the electric field becomes

E(z=12")= / f‘(m/x') STy ks, (3)

One more condition needs to be applied, i.e. the bound-
ary condition on the microstrip. For perfect conductors,
the tangential electric field vanishes on the line. In this
study, we approximate the strip with an equivalent non-zero
frequency-dependent surface impedance boundary extending
over the surface of the strip. It is desirable that this sur-
face impedance describes, in a physical equivalent sense, the
frequency-dependent field penetration in the lossy strips. In
[5],16] an integral equation formulation was presented for the
evaluation of the frequency-dependent longitudinal current
distribution in rectangular microstrip lines. This method al-
lows us to compute the per unit length resistance R(f) and
the per unit length internal inductance of the strip L;,(f)
as function of frequency. An equivalent longitudinal surface
impedance can be defined then as

20 = B = R+ Law,  (4)

where w is the width of the strip. As far as the transverse
component of the current is concerned, the standard surface
impedance for an infinite resistive plane is used,

E, 51

_ 8y oy = 31
H, Zs (1 +7) prs G
where ¢ is the conductivity of the strip and é the skin depth
at the frequency of interest. Despite the fact that the width
of the strip is finite, use of (5) is justified by the fact that

the strip is assumed to be infinite in the direction perpendic-
ular to the flow of the transverse component of the current.
In addition, for most practical purposes, |J,| < |J;|, there-
fore the dominant part of the conductor loss is due to the
longitudinal component of the current, for which the more
accurate longitudinal surface impedance Z;( f) has been pro-
posed. The boundary condition for the magnetic field on the
surface impedance boundary gives

AxH=J. (6)
In view of (4-6), (3) becomes
/ {:P(m/x') R jdy' — Zl,s j } Ikz=k£’fs =0 (7)

which is the pertinent integral equation for the problei.
The formulation of the Green’s function results in a sim-
ple expression involving a single summation over the modes
in the y-direction. The resulting homogeneous equation is
solved for the microstrip propagation constant at the plane
z = 0 with as many as a thousand modes to insure conver-
gence. The method of moments is applied using a variation
of Galerkin’s procedure. Entire domain functions are used to
solve for the current distribution. The above expression can
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be easily programmed on a personal computer to evaluate
the propagation constant of the dominant and higher order
microstrip modes.

RESULTS

The objective of this study is to determine the dispersion
characteristics of single and multiple microstrip lines on sin-
gle and multilayered substrates. Based on the theory derived
in the previous section, a computer program has been devel-
oped to calculate the complex zeros of an analytic complex
function using the Muller’s algorithm with deflation.

Results on attenuation due to lossy dielectrics compare
very well with available data. When considering conductor
losses, the normalized phase constant of the dominant mode
is seen to be slightly larger when no substrate losses are con-
sidered (see Figure 2). As the loss tangent of the substrate
increases, the phase constant is smaller than in the case of
a perfect conductor. As frequency increases, the phase con-
stant tends toward the perfect conductor case. The attenu-
ation constant of the dominant mode increases as expected
when including conductor losses (see Figure 3). Attenuation
for the case of a single strip and coupled strips is shown in
Figures 4 and 5 respectively. Results are compared to the
perturbation method in the spectral domain [3],[4] and to
the finite-element method [7] . The method presented in
this paper will be implemented to evaluate high frequencies
dielectric and conductor losses for various interconnects ain}
results will be presented.

CONCLUSIONS

An integral equation approach is applied to calculate the
propagation constant of multiple strips on multilayered sub-
strates. An equivalent impedance boundary is employed {Lal,
takes into account the finite conductivity of the strips and
extends to the case where the thickness of the conductor is
of the same order of magnitude as the skin depth. Phase
constant and attenuation for single and coupled strips are
presented.
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Figure 2: Effect of conductor losses on propagation constant Figure 3: Effect of conductor and dielectric losses on propa-

of the dominant microstrip mode as a function of loss tangent gation constant of the dominant microstrip mode as a func-
tion of frequency
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Figure 4: Conductor and dielectric losses of a single strip versus strip width: — present method,
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Figure 5: Conductor and dielectric losses of coupled strips versus line separation: —- present method,

w/d=1 €6 =100 = 3.33 x 107 S/m, tané = 2 x 1074, f = 1 GHz )
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