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A kstract
An integral equation method is developed to calcu-

late the dispersion of non-perfectly conducting microstrip
lines. Both dielectric losses in the substrate and con-
ductor losses in the strips and ground plane are con-
sidered. Multiple conductors on several layers can be
studied using an impedance boundary formulation for
the derivation of the Green’s function. The microstrip
losses are evaluated by using a frequency-dependent sur-
face impedance which is derived by solving the fields in
the conductors. This surface impedance replaces the con-
ducting strip and takes into account the thickness and
skin effect of the strip at high frequencies. Good agree-
ment with available literature data is shown.

INTRODUCTION

The effect of conductor losses in microstrip circuits and
especially MMIC’S is important to the circuit designer who
isconcerned with dissipation and power loss. Several stud-
ies have been performed to calculate the dispersion in mi-
crostrip structures at microwave frecmencies considering di-
electricand conductorlosses.Conductor losseshave first

beenanalyzedby Wheeler [1]and Pucel[2]where a technique

based on the incremental-inductance rule was used. Other
approachestotheproblemoflossesincludequasi-TEM mod-
els and the conventional perturbation technique as in [3] us-

inga spectral-domain approach. However, these methods are
limited to the case where the thickness of the strip is much
larger than the skin depth. In the present study, a method is
applied that represents conductor losses in microstrip lines
by using a frequency-dependent impedance boundary, thus
takingintoaccountthe skin-effectproblem.The procedure

appliedforthesolutionofthisproblem isverypowerfuland

general.In factitcan be appliedtoany number ofprobIems
includingthinmetallizations.The proposedmethod willbe

appliedtovariousinterconnectsand theirpropagationchar-
acteristicswillbe studiedin the presenceof otherlinesor
undertheeffectoftheshieldingcavity.

Y

Figure1:Shieldedmicrostriplineconfiguration

THEORETICAL DERIVATION

Shielded planar microstrip transmission lines inside an in-
homogeneously filled waveguide are considered as shown in
Figure 1. Both dielectric losses in the substrate and conduc-
tor losses in the strip and ground plane are accounted for.
The side walls are assumed perfect conductors. Because of
the shielded structure, these lines propagate hybrid modes

which have non-zero cut-off frequencies with the exception of
the dominant mode. The LSE and LSM modes propagating
along the z-direction can be obtained by solving the related
boundary value problem.

The dyadic Green’s function for the problem is derived
in the spectral domain using the boundary conditions on
the perfectly conducting walls and an equivalent impedance
boundary condition on the interfaces. The current has a

transverse component and a longitudinal component. Their
variation in the y-direction is chosen such that the edge con-
ditions on the strips are satisfied. The electric field is then
given by Pocklington’s integral equation as

E(z = z’) = / J ~(z/J) . ,7(Y’) e-~k~s” dy’ dz’, (1)

where k~s is the unknown complex propagation constant of
themicrostrip. The Fourier transform used is given by
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Substituting (2) in (1) and using the sifting property of the

Fourier transform, the electric field becomes

.
Z(z = z’) = / qz/zY) .1 C&’ l~z=kys. (3)

One more condition needs to be applied, i.e. the bound-

ary condition on the microstrip. For perfect conductors,

the tangential electric field vanishes on the line. In this

study, we approximate the strip with an equivalent non-zero

frequency-dependent surface impedance boundary extending

over the surface of the strip; It is desirable that this sur-

face impedance describes, in a physical equivalent sense, the

frequency-dependent field penetration in the lossy strips. In

[5],[6] an integral equation formulation was presented for the

evaluation of the frequency-dependent longitudinal current

distribution in rectangular microstrip lines. This method al-

lows us to compute the per unit length resistance R(f) and

the per unit length internal inductance of the strip Li.(~)

as function of frequency. An equivalent longitudinal surface

impedance can be defined then as

z(f) E ; = (R(f) + j z~f ~in)’w, (4)
v

where w is the width of the strip. As far as the transverse

component of the current is concerned, the standard surface

impedance for an infinite resistive plane is used,

3 = z, = (l+j)~—
HZ –

(3)
06 ‘

where o is the conductivity of the strip and b the skin depth

at the frequency of interest. Despite the fact that the width

of the strip is finite, use of (5) is justified by the fact that

the strip is assumed to be infinite in the direction perpendic-

ular to the flow of the transverse component of the current.

In addition, for most practical purposes, [J9 I << 1~~1, there-

fore the dominant part of the conductor loss is due to the

longitudinal component of the current, for which the more

accurate longitudinal surface impedance Zl(.f) has been pro-

posed. The boundary condition for the magnetic field on the

surface impedance boundary gives

71x H=J. (6)

In view of (4-6), (3) becomes,

/{~(+’).J@’ - Z,,SJ,,,Z=,MS=O (7)z

which is the pertinent integral equation for the problel ii.
The formulation of the Green’s function results in a sim-

ple expression involving a single summation over the modes

in the y-direction. The resulting homogeneous equation is

solved for the microstrip propagation constant at the plane

z = O with as many as a thousand modes to insure conver-

gence. The method of moments is applied using a variation

of Galerkin’s procedure. Entire domain functions are used to

solve for the current distribution. The above expression can

be easily programmed on a personal computer to evaluate

the propagation constant of the dominant and higher order

microstrip modes.

RESULTS

The objective of this study is to determine the dispersion

characteristics of single and multiple microstrip lines on sin-

gle and multilayered substrates. Based on the theory derived

in the previous section, a computer program has been devel-

oped to calculate the complex zeros of an analytic complex

function using the Muller’s algorithm with deflation.

Results on attenuation due to Iossy dielectrics compare

very well with available data. When considering conductor

losses, the normalized phase constant of the dominant mode

is seen to be slightly larger when no substrate losses are con-

sidered (see Figure 2). As the loss tangent of the substrate

increases, the phase constant is smaller than in the case of

a perfect conductor. As frequency increases, the phase con-

stant tends toward the perfect conductor case. The attenu-

ation constant of the dominant mode increases as expected

when including conduct or losses (see Figure 3). Attenuation

for the case of a single strip and coupled strips is shown in

Figures 4 and 5 respectively. Results are compared to the

perturbation method in the spectral domain [3] ,[4] and to

the finite-element method [7] . The method presented in

this paper will be implemented to evaluate high frequencies

dielectric and conductor losses for various interconnects :,,,,1

results will be presented.

CONCLUSIONS

An integral equation approach is applied to calculate the

propagation constant of multiple strips on multilayered sub-

strates. An equivalent impedance boundary is employed t !M t

takes into account the finite conductivity of the strips and

extends to the case where the thickness of the conductor is

of the same order of magnitude as the skin depth. Phase

constant and attenuation for single and coupled strips are

presented.
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Figure 4: Conductor and dielectric losses of a single strip versus strip width: — present method,
(c. = 10, a = 3.33x 107 S/m, tan6 = 2 x 10-4, ~ = 1 GIIz )
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Figure 5: Conductor and dielectric lossesof coupled strips versus line separation: —- present method,
w / d =1, c, = 10, a = 3.33 x 107 S/m, tan6 = 2 x 10-4, f = 1 GIIz )
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